Modeling Decision Making Under Risk using Neurochemistry

Chew Soo Hong
Richard Ebstein
Zhong Songfa

Spencer Conference
Beyond Correlation in the Study of Personality
Beyond Correlation in the Study of Personality including attitude towards economic risk
Classical Decision Theory

- Primitives based on revealed choice
- Utility specification on well defined domain
- Clean/efficient axiomatization, preferably

For examples, EU
“Behavioral” Decision Theory

• Classical decision theory + psychological considerations
“Behavioral” Decision Theory

- Classical decision theory + psychological considerations
- Prime example – prospect theory (1979):
 - Loss-gain differentiation: reference dependence, loss aversion, gain-loss differentiation of risk attitude
 - Nonlinear response to probabilistic outcomes
Valuation Function in Prospect Theory (K&T 1979)

- Weber-Fechner
- Reference point
 - Status quo
 - Endowment effect
- Loss-gain differentiation
 - Risk averse in gain
 - Risk taking in loss
- Loss looms larger than gain
 - Loss aversion

Figure 3.—A hypothetical value function.
Probability Weighting

- Weber-Fechner again?
- Pessimism and optimism
- Overweight small probabilities

Figure 4.—A hypothetical weighting function.
Beyond revealed choice

- Biomarkers (e.g., gender) and physiological variables
- Brain activation
- Genetic makeup
How might biology be incorporated?
Gene ↔ Decision

- Decision
- Brain activation
- Neurotransmitters/hormones
- Genes
Heritability of Risk Attitude

- Zhong et al., 2009
 - Genetic effect (57%)
 - Environmental effects (43%)
- Cesarini et al., 2009
 - Genetic effect (14%)
 - Environmental effects (86%)
<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Risk Attitude</th>
<th>Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crisan et al</td>
<td>36</td>
<td>Loss-gain framing</td>
<td>5-HTTLPR</td>
</tr>
<tr>
<td>Dreber et al</td>
<td>94</td>
<td>Portfolio choice</td>
<td>DRD4</td>
</tr>
<tr>
<td>Kuhnen & Chiao</td>
<td>65</td>
<td>Portfolio choice</td>
<td>5-HTTLPR, DRD4</td>
</tr>
<tr>
<td>Roe et al</td>
<td>67</td>
<td>Multiple-price list design</td>
<td>CHRNA4</td>
</tr>
<tr>
<td>Roiser et al</td>
<td>30</td>
<td>Loss-gain framing with fMRI</td>
<td>5-HTTLPR</td>
</tr>
<tr>
<td>Zhong et al (2009b)</td>
<td>325</td>
<td>Even-chance risks over gains and losses</td>
<td>Stin2, DAT1</td>
</tr>
<tr>
<td>Zhong et al (2009c)</td>
<td>325</td>
<td>Longshot risks over gains and losses</td>
<td>MAOA</td>
</tr>
<tr>
<td>Zhong et al (2009c)</td>
<td>325</td>
<td>Longshot risks over gains and losses</td>
<td>MAOA</td>
</tr>
</tbody>
</table>
Goal

• Immediate
 – Build a model of decision making under risk linking genetic makeup with revealed choice.

• Long Term
 – Develop biologically sound approach to economic modeling

• Eventually
 – behavioral x biological economics (B^2E)
Two Immediate Deliverables

• Predict association between gene and decision
 – Go beyond association
Immediate Deliverables

• Predict association between gene and decision
 – Go beyond association

• Predict correlation in fourfold risk attitude
 – Share common biological factors
Attitudes towards Fourfold Risks

- Moderate Hazards: Limited Risk Preference
- Skewed Hazards: Globally Risk Averse
- Moderate Prospects: Globally Risk Averse
- Skewed Prospects: Limited Risk Preference
Moderate Prospect

• Subjects valuation (v) of risky option (50% of getting 60 Yuan; 50% of getting nothing)
 – $V > 35$
 – $30 < V < 35$
 – $25 < V < 30$
 – $V < 25$
Moderate Hazard

• Subjects valuation (v) of risky option (50% of losing 10 Yuan; 50% of losing nothing)
 – $V > -4$
 – $-4 < V < -5$
 – $-5 < V < -6$
 – $V < -6$
Longshot Prospect

- Longshot preference (1% chance of getting 200 Yuan > 10% chance of getting 20 Yuan > 2 Yuan for sure).
 - Yes
 - No
Longshot Hazard

• Insurance (Losing 2 Yuan for sure > 0.1% chance of losing 2000 Yuan).
 – Yes
 – No
Correlations among Fourfold Risks?

<table>
<thead>
<tr>
<th></th>
<th>Moderate Prospect</th>
<th>Longshot Prospect</th>
<th>Moderate Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longshot Prospect</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>Moderate Hazard</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Longshot Hazard</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Prediction of most models limited to:

<table>
<thead>
<tr>
<th></th>
<th>Moderate Prospect</th>
<th>Longshot Prospect</th>
<th>Moderate Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longshot Prospect</td>
<td>+</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Moderate Hazard</td>
<td>NA</td>
<td>NA</td>
<td>+</td>
</tr>
<tr>
<td>Longshot Hazard</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Concave (convex) valuation function in gain (loss) would predict positive correlation between MP and LP (MH and LH).
New Behavioral Evidence: Correlations among Four-fold Risks

<table>
<thead>
<tr>
<th></th>
<th>Moderate Prospect</th>
<th>Longshot Prospect</th>
<th>Moderate Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longshot Prospect</td>
<td>0.160**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate Hazard</td>
<td>0.297***</td>
<td>0.137*</td>
<td></td>
</tr>
<tr>
<td>Longshot Hazard</td>
<td>−0.070</td>
<td>0.034</td>
<td>0.031</td>
</tr>
</tbody>
</table>

Table 1. Spearman correlation between different pairs of attitude towards fourfold risks (N=325). Estimated correlation with two-tails significance indicated by * for 5%, ** for 1%, and *** for 0.1%.
Neurochemistry without Tears
Polymorphic genes coding for DA neurotransmission modulate available neurotransmitter receptor numbers that contribute to background DA firing.
Dopamine (DA)
• Gain
 – reward as well as reward prediction errors (Schultz, Dayan, and Montague, 1997)
 – novelty seeking (Cloninger, 1986; Ebstein et al., 1996)
 – expected reward (Preuschoff, Bossarts and Quartz, 2005)
• Not loss
 – does not produce negative prediction error (Fiorillo, Tobler, and Schultz, 2003).
 – administration of DA drugs affects risky decision making under gains but not under losses (Pessiglione et al 2006)
Neurochemistry without Tears

Serotonin (5HT)

• Harm avoidance (Cloninger, 1986)
• Anxiety-related personality traits (Lesch et al 1996)
• Amygdala activation and loss-gain framing (Roiser et al 2009)

DA and 5HT Opponent Partnership Hypothesis

• Opponency between reward and punishment is fundamentally asymmetric (Daw, et al, 2002; Dayan and Huys, 2009)
• Losses loom larger than gains
Saliency – salient stimuli (e.g., tones and light) that are not inherently reward related (see Ungless, 2004 for review).

• novelty of an unexpected physical stimulus (Ljungberg, Apicella, and Schultz, 1992).
• unexpected novel sound interferes, even in the absence of reward (Zink et al, 2006).
Tone
- low-level background firings in slow, irregular single-spike mode.
- Polymorphic genes modulate available neurotransmitter/receptor numbers that contribute to their background firing.
Fourfold pattern of risk attitude

Task 1: Moderate Prospect (G, ½)
(61% exhibits risk tolerance for longshot prospects)

Task 2: Longshot Prospect (G, p)
(80% exhibits risk aversion for moderate prospects):

Task 3: Moderate Hazard (L, ½)
(69% exhibits risk tolerance for moderate hazards)

Task 4: Longshot Hazard (L, q)
(69% exhibits risk aversion for longshot hazards)
Biology of Fechner-Weber Law

– Beyond psychophysics

Figure 3.—A hypothetical value function.
Berns’ Biological Bound Hypothesis

• Noting that DA are in limited supply in the brain, they lead naturally to bounds to the value function in both gains and loss domains

• This value function would be convex over losses besides being concave over gain

• Implication re “kink” at status quo

• Biological basis for the psychophysics of valuation sensitivity
Biological Bound Hypothesis + Tone
Bound + Tone Hypothesis for DA

- **Bound**: limited availability
- **Tone**: low-level background firings
- Higher DA tone, lower capacity, more concave in gain
Bound + Tone Hypothesis for 5HT

- **Tone**: low-level background firings
- **Bound**: limited availability
- Higher 5HT tone, lower capacity, more convex in loss
Hypothesis V (Dual System)

• Higher DA (5HT) tone associates with a more concave (convex) valuation function over gains (losses).
Candidate Genes ↓↑ = TONE

• **Dopamine** transporter
 – (9 ↓, 10 ↑)

• **Serotonin** transporter – 2 polymorphisms
 – **5HTTLPR** (short ↑, long ↓)
 – **STiN2** (10 ↑, 12 ↓)
Corroborating Dual System Hypothesis (Zhong et al., 2009 b)

- 325 subjects
- Risk attitude for gain and loss
- Candidate Gene – *Dopamine* transporter DAT
 - midbrain activation (Schott et al., 2006)
 - in vivo transporter availability (van Dyck et al., 2005)
 - (9 ↓, 10 ↑)
- Candidate Gene – *Serotonin* transporter
 - 5HTTLPR (short ↑, long ↓)
 - STiN2 (10 ↑, 12 ↓)

↓↑ = TONE
<table>
<thead>
<tr>
<th>Gene</th>
<th>Gain</th>
<th>OR</th>
<th>CI</th>
<th>z-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAT1</td>
<td>1.77</td>
<td>1.04</td>
<td>3.04</td>
<td>2.07</td>
<td>0.035*</td>
</tr>
<tr>
<td>STin2</td>
<td>1.22</td>
<td>0.96</td>
<td>1.54</td>
<td>1.63</td>
<td>0.104</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>1.21</td>
<td>0.86</td>
<td>1.68</td>
<td>1.12</td>
<td>0.264</td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAT1</td>
<td>1.63</td>
<td>0.88</td>
<td>2.99</td>
<td>1.56</td>
<td>0.118</td>
</tr>
<tr>
<td>STin2</td>
<td>1.36</td>
<td>1.03</td>
<td>1.79</td>
<td>2.18</td>
<td>0.029*</td>
</tr>
<tr>
<td>5-HTTLPR</td>
<td>1.36</td>
<td>0.97</td>
<td>1.9</td>
<td>1.78</td>
<td>0.075</td>
</tr>
</tbody>
</table>
Nonlinear Probability Weighting

- \(\frac{p^c}{[p^c + (1-p)^c]^{1/c}} \) (Tversky and Kahneman, 1992)
- \(\frac{sp^c}{[sp^c + (1-p)^c]} \) (Lattimore, Baker, and Witte, 1992)
- \(\exp\{-[-\ln p]^a\} \) (Prelec, 1998)
- \(\frac{1}{1 + (1-p)/ps} \) (Rachlin et al 1991)
Outcome Dependence

- Overweighting of small probabilities depends on the size of outcomes such that large outcomes engender greater curvature than smaller outcomes. (Camerer, 1992; Tversky and Kahneman, 1992)

- People tend to be more pessimistic when facing large losses (Etchart-Vincent, 2004)

- Reflecting affect salience and echo the suggestion that they can depend on the underlying outcome x (Rottenstreich and Hsee, 2002)
Nonlinear Probability Weighting

- $p^c/[p^c + (1 - p)^c]^{1/c}$ (Tversky and Kahneman, 1992)
- $sp^c/[sp^c + (1 - p)^c]$ (Lattimore, Baker, and Witte, 1992)
- $\exp\{-[-\ln p]^a\}$ (Prelec, 1998)
- $1/[1 + (1 - p)/ps]$ (Rachlin et al 1991)

Incorporating outcome dependence

\[
ps(x)/[ps(x) + 1 - p]
\]
Salience function $s(x)$
Proposition A

- Under a loss-averse utility function v with $v(0) = 0$ and a U-shaped salience function s which is minimized at 0, the decision maker exhibits
 - aversion towards $(G, \frac{1}{2})$ if $v(G/2)/v(G) > [1 + s(0)/s(G)]^{-1}$,
 - tolerance towards $(L, \frac{1}{2})$ if $v(L/2)/v(L) < [1 + s(0)/s(L)]^{-1}$,
 - tolerance towards (G, p) with p sufficiently small if $s(G)/G > v'(0)s(0)/m$
 - aversion towards (L, q) with q sufficiently small if $s(L)/|L| > v'(0)s(0)$
Hypothesis S – DA

• **Lower DA tone** engenders a salience function s that increases faster over gains and decreases faster over losses relative to the case for higher DA tone.

(A) Saliency of outcomes and DA tone
Hypothesis S – 5HT

• **Lower 5HT tone** engenders a salience function that decreases faster over losses as well as gains relative to the case for higher 5HT tone.

• **Attention focus and emotional salience**
Proposition B

Relative to the case of low DA tone, a decision maker with high DA tone will tend to be

- D(i) more averse towards moderate prospects.
- D(ii) more averse towards longshot prospects.
- D(iii) less averse towards longshot hazards.

Relative to case of low 5HT tone, a decision maker with high 5HT tone will tend to be

- S(i) less averse towards moderate hazards.
- S(ii) less averse towards longshot hazards.
- S(iii) less averse towards longshot prospects.
Correlation among Fourfold Risks

<table>
<thead>
<tr>
<th></th>
<th>Moderate Prospect</th>
<th>Longshot Prospect</th>
<th>Moderate Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longshot Prospect</td>
<td>Positive: $D(i)$ & $D(ii)$ 0.160**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate Hazard</td>
<td>Positive# 0.297***</td>
<td>Positive: $S(i)$ & $S(iii)$ 0.137*</td>
<td></td>
</tr>
<tr>
<td>Longshot Hazard</td>
<td>Negative: $D(i)$ & $D(iii)$ – 0.070</td>
<td>No implication 0.034</td>
<td>Positive: $S(i)$ & $S(ii)$ 0.031</td>
</tr>
</tbody>
</table>

Table 1. Spearman correlation between different pairs of attitude towards fourfold risks (N=325). Estimated correlation with two-tail significance indicated by * for 5%, ** for 1%, and *** for 0.1%. #Interaction between dopamine and serotonin transmitters
Association Results for Longshot Risks

(A) Percentage choosing lottery

(B) Percentage choosing insurance
Final Slide

• One small step in incorporating biology to model decision making under uncertainty
 – Neurochemical tones as reference points
 – Dual-system model: Is an individual a group?

• Consilience of biology (beyond psychology) and economics, especially decision theory
Center for Biological Economics and Decision Making, NUS
Center for Experimental Business Research, HKUST
 CHEW Soo Hong (Director)
 Robin CHARK
 LI King King
 ZHONG Songfa
Scheinfeld Center for Genetic Studies in the Social Sciences, Hebrew U
 Richard P EBSTEIN (Director)
 Shlomo ISRAEL
 Idan SHALEV
State Key Laboratory of Brain and Cognitive Sciences, HKU
 Pak C SHAM (Director)
 Stacey S CHERNY
Applied Genomic Center, HKUST
 XUE Hong (Director)
 TSANG Sue
Source Dependence via Saliency

- “Known” uncertainty is more salient than “less known” uncertainty
 - Two decks of cards
- “Familiar” uncertainty is more salient than “less familiar” uncertainty
 - Two cities in China

s is more salient than s^* if s/s^* is nondecreasing
Ambiguity Aversion and Familiarity Bias

(A) **5-HTTLPR and familiarity bias.** Subjects with short allele tend to bet on Beijing.

(B) **DRD5 and ambiguity aversion in female.** Female subjects without 148bp allele tend to bet on known deck.

(C) **ESR2 and ambiguity aversion in female.** Subjects with short allele tend to bet on known deck.